К статье
РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ
Метод Лауэ. В методе Лауэ применяется непрерывный "белый" спектр рентгеновского излучения, которое направляется на неподвижный монокристалл. Для конкретного значения периода d из всего спектра автоматически выбирается соответствующее условию Брэгга - Вульфа значение длины волны. Получаемые таким образом лауэграммы дают возможность судить о направлениях дифрагированных пучков и, следовательно, об ориентациях плоскостей кристалла, что позволяет также сделать важные выводы относительно симметрии, ориентации кристалла и наличия в нем дефектов. При этом, однако, утрачивается информация о пространственном периоде d. На рис. 7 приводится пример лауэграммы. Рентгеновская пленка располагалась со стороны кристалла, противоположной той, на которую падал рентгеновский пучок из источника.
Метод Дебая - Шеррера (для поликристаллических образцов). В отличие от предыдущего метода, здесь используется монохроматическое излучение (. = const), а варьируется угол ?. Это достигается использованием поликристаллического образца, состоящего из многочисленных мелких кристаллитов случайной ориентации, среди которых имеются и удовлетворяющие условию Брэгга - Вульфа. Дифрагированные пучки образуют конусы, ось которых направлена вдоль пучка рентгеновского излучения. Для съемки обычно используется узкая полоска рентгеновской пленки в цилиндрической кассете, а рентгеновские лучи распространяются по диаметру через отверстия в пленке. Полученная таким образом дебаеграмма (рис. 8) содержит точную информацию о периоде d, т.е. о структуре кристалла, но не дает информации, которую содержит лауэграмма. Поэтому оба метода взаимно дополняют друг друга. Рассмотрим некоторые применения метода Дебая - Шеррера.
Идентификация химических элементов и соединений. По определенному из дебаеграммы углу . можно вычислить характерное для данного элемента или соединения межплоскостное расстояние d. В настоящее время составлено множество таблиц значений d, позволяющих идентифицировать не только тот или иной химический элемент или соединение, но и различные фазовые состояния одного и того же вещества, что не всегда дает химический анализ. Можно также в сплавах замещения с высокой точностью определять содержание второго компонента по зависимости периода d от концентрации.
Анализ напряжений. По измеренной разнице межплоскостных расстояний для разных направлений в кристаллах можно, зная модуль упругости материала, с высокой точностью вычислять малые напряжения в нем.
Исследования преимущественной ориентации в кристаллах. Если малые кристаллиты в поликристаллическом образце ориентированы не совсем случайным образом, то кольца на дебаеграмме будут иметь разную интенсивность. При наличии резко выраженной преимущественной ориентации максимумы интенсивности концентрируются в отдельных пятнах на снимке, который становится похож на снимок для монокристалла. Например, при глубокой холодной прокатке металлический лист приобретает текстуру - выраженную ориентацию кристаллитов. По дебаеграмме можно судить о характере холодной обработки материала.
Исследование размеров зерен. Если размер зерен поликристалла более 10-3 см, то линии на дебаеграмме будут состоять из отдельных пятен, поскольку в этом случае число кристаллитов недостаточно для того, чтобы перекрыть весь диапазон значений углов ?. Если же размер кристаллитов менее 10-5 см, то дифракционные линии становятся шире. Их ширина обратно пропорциональна размеру кристаллитов. Уширение происходит по той же причине, по которой при уменьшении числа щелей уменьшается разрешающая способность дифракционной решетки. Рентгеновское излучение позволяет определять размеры зерен в диапазоне 10-7-10-6 см.
Методы для монокристаллов. Чтобы дифракция на кристалле давала информацию не только о пространственном периоде, но и об ориентации каждой совокупности дифрагирующих плоскостей, используются методы вращающегося монокристалла. На кристалл падает монохроматический пучок рентгеновского излучения. Кристалл вращается вокруг главной оси, для которой выполняются уравнения Лауэ. При этом изменяется угол ?, входящий в формулу Брэгга - Вульфа. Дифракционные максимумы располагаются в месте пересечения дифракционных конусов Лауэ с цилиндрической поверхностью пленки (рис. 9). В результате получается дифракционная картина типа представленной на рис. 10. Однако возможны осложнения из-за перекрытия разных дифракционных порядков в одной точке. Метод может быть значительно усовершенствован, если одновременно с вращением кристалла перемещать определенным образом и пленку.
Исследования жидкостей и газов. Известно, что жидкости, газы и аморфные тела не обладают правильной кристаллической структурой. Но и здесь между атомами в молекулах существует химическая связь, благодаря которой расстояние между ними остается почти постоянным, хотя сами молекулы в пространстве ориентированы случайным образом. Такие материалы тоже дают дифракционную картину с относительно небольшим числом размытых максимумов. Обработка такой картины современными методами позволяет получить информацию о структуре даже таких некристаллических материалов.